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"C. The proton NMR spectrum of this compound was consistent 
with that expected for the methyl ester. 
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chloride (5 mL) were refluxed for 1 h in a 50-mL, round-bottomed 
flask. After removal of the thionyl chloride on a rotoevaporator, 
absolute methanol (25 mL) was added, and the resulting mixture 
was allowed to stand overnight. The methanol was removed on 
a rotuevaporator, and the resulting yellow solid was recrystallized 
from hexane to give 0.53 g (67%) of light yellow crystals, mp 68-70 

N Communwations 
Oxygen-17 and Carbon-13 Identification of the 
Dimethyldioxirane Intermediate Arising in the 
Reaction of Potassium Caroate with Acetone 

Summary: Starting with 170-labeled or 2-13C-labeled 
acetone, 170 and 13C NMR evidence could be gathered 
which supports the dioxirane structure for the peroxide 
intermediate isolated from reaction solutions containing 
potassium caroate and acetone. 

Sir: During the last decade we have collected kinetic, 
ls0-labeling, and stereochemical data that stringently 
suggest dioxiranes-i.e., the smallest ring peroxide species 
containing carbon-are generated in the reaction of po- 
tassium peroxymonosulfate (caroate) with 
Recently, the case for the existence of dioxiranes in the 
condensed phase was completed by Murray and Jeyara- 
man by showing that a number of low-molecular-weight 
dialkyldioxiranes can actually be isolated from buffered 
(pH 7, NaHCOJ aqueous solutions containing caroate and 
the parent k e t ~ n e . ~  Indeed, in the elegant procedure 
devised by these authors, room temperature distillation 
in a flow of inert gas allows one to  remove from the re- 
action solution some of the dioxirane intermediate that 
builds up in a stationary concentration during the early 
stages of the reaction between the inorganic peroxide and 
the ketone (e.g., Scheme I).4 Along with observations 
concerning reactivity, the spectroscopic evidence presented 
is convincing for the dioxirane s t r ~ c t u r e . ~  Dimethyl- 
dioxirane solutions are observed to yield acetone diper- 
oxide 3: and this even in the absence of Lewis acid cata- 
lysts (although much more slowly). Also in view of the 
debated dioxirane 1-carbonyl oxide 2 d i ~ h o t o m y , ~ ~ ~ ~ ~  we 
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Figure 1. (A) 170 NMR spectrum of ca. 0.06 M dimethyldioxirane 
(1; I7O labeled) in acetone, at 4 "C (27.12 MHz, recorded over ca. 
16 h, 570 000 scans, no sensitivity enhancement applied to FID 
before FT); (B) 'H decoupled 13C NMR spectrum of endocyclic 
carbon-labeled (ca. 5% 13C) 0.06 M dimethyldioxirane in acetone, 
at 4 "C (50.03 MHz, 4040 scans, digital resolution 0.39 Hzjpoint, 
0.16-s sensitivity enhancement); (C) insert (50-Hz sweep width, 
5103-Hz sweep offset, 37380 scans) shows the 'H-coupled spectrum 
portion relative to the 13C resonance at 102 ppm. 

have sought 170 NMR confirmation of the structure of the 
peroxide intermediate generated as in Scheme I. 

The difficulties routinely encountered in the detection 
of 170 NMR resonances of peroxide oxygens in natural 
abundance are well understood.'@13 In particular, as we 
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had to deal with dilute solutions of the peroxide, we 
deemed it essential to provide the 0-0 bond with signif- 
icant 170 enrichment.12 This was done by a small-scale run 
of the reported procedure,4a using 170-labeled (10.4%) 
a ~ e t o n e . ' ~  We could then record 170 NMR spectra of 
freshly prepared solutions of the intermediate; an example 
is shown in Figure 1. Notice that acetone solvent and 
residual water give rise to strong 170 resonances appearing 
a t  573 and -11 ppm, re~pectively;'~ along with these, a 
single absorption is present a t  6 302 (Aulj2 N 113 Hz). This 
resonance cannot be due to the dimer 3, as we find that 
acetone diperoxide (in acetone, 4 "C) yields a single res- 
onance a t  263 ppm (Aullz N 350 Hz). Since the currently 
available 170 NMR techniques allow one to detect separate 
resonances for magnetically nonequivalent oxygens of the 
0-0 bond in simple peroxides (e.g., ~ -BuOOH) , '~J~  one is 
led to conclude that the peroxide intermediate has the 
dioxirane structure 1. Indeed, in the temperature range 
from 0 to 25 "C, no significant change in chemical shift 
or line width of the given resonance occurs that could be 
ascribed to the onset of a dynamic process; thus, it  is 
unlikely the single resonance observed is due to the rapid 
interconversion of two nonequivalent oxygens as in car- 
bonyl oxide 2. 

Noteworthy, the 170 chemical shift of dimethyldioxirane 
(A, 335 nm, E N 260)& is some 27-22 ppm downfield from 
that of simple four- or five-membered ring  peroxide^,'^ 
namely, dioxetanes (& N 280 nm)sd and dioxolanes (A, 
< 220 nm). It would be tempting to link this phenomenon 
to a larger negative paramagnetic contribution to shielding 
on the basis of a Ramsey-type equation, relating chemical 
shifts to the reciprocal of hE for the lowest energy elec- 
tronic transition.16J7 

We found the labeling technique to be also useful in 
assessing the 13C NMR identification of l.lS In fact, while 
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the CH3 resonance reported for 1 (6 22.7)4a appears quite 
consistent, the ring-carbon resonance given (6 214.)4aJ9 
seems too far downfield for an sp3-carbon, even in a 
strained-ring state.z0 Thus, we employed acetone that was 
labeled with I3C (ca. 5 % )  exclusively at  the carbonyl 
carbonz1 to obtain solutions of dioxirane labeled at  the 
endocyclic carbon by following the mentioned procedure 
(suitably scaled down to 1/3). 

The 13C NMR spectrum is presented in Figure 1. 
Comparison with the analogous spectra of unlabeled di- 
oxirane permits location unambiguously at  102. ppm for 
the ring carbon resonance. I t  is significant that the 'H- 
coupled spectrum correctly yields, for this resonance, a 
septet with the proper intensity ratios and 2J = 5.5 Hz 
(Figure 1). Other features of the lH-coupled spectrum also 
agree with the assigned structure 1; namely, 6(CH3) 22.5 
(quartet of quartets, 'J = 127.5 Hz and 3J = 2.2 Hz). By 
way of comparison, for acetone diperoxide 3 in acetone, 
we find 6 20.5 and 22.3 (axial and equatorial CH3;22 two 
sets of quartets in the 'H-coupled spectrum, lJ = 129 Hz). 

Thus, the spectroscopic evidence presented herein cor- 
roborates the dioxirane structure for the peroxide inter- 
mediate generated by the acetone/caroate system. Since 
it is now clear that, in the absence of effective nucleophiles, 
dioxiranes can have sufficient kinetic stability to be 
characterized or even isolated, new avenues appear to be 
open to investigate aspects of their reactivity other than 
peroxidic oxygen t r a n ~ f e r . ~  
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